QUESTION BANK 2020

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code :APPLIED PHYSICS (20HS0849) Course & Branch: B.Tech – EEE & ECE Year &Sem: I-B.Tech II - Sem.

Regulation: R20

UNIT- I WAVE OPTICS

1	a) State and explain principle of superposition.	[6M] [L1]
	b) Summarizing the importance conditions to get interference.	[6M] [L2]
2	a) Discuss the theory of interference of light due to thin films by reflection with suit	able ray
	diagram.	[4M] [L1]
	b) Derive the condition for constructive and destructive interference in the case of	reflected
	system.	[8M] [L4]
3	a) Describe the formation of Newton's ring with necessary theory with relevant diag	gram and
	derive the expressions for dark and bright fringes.	[9M] [L3]
	b) In a Newton's rings experiment, the diameter of the 5 th ring is 0.30 cm and the di	ameter of
	the 15 th ring is 0.62 cm. Calculate the diameter of the 25 th ring.	[3M] [L4]
4	a) Explain how the wavelength of light sources is determined by forming Newton's	ring.
		[8M] [L4]
	b) In a Newton's rings experiment the diameter of the 8 th ring was 0.35cm and the d	iameter of
	the 18 th ring was 0.65cm. If the wavelength of the light used is 6000A° then find the	radius of
	curvature of the plano-covex lens.	[4M] [L4]
5.	a) Write engineering applications of Interference and diffraction.	[8M] [L3]
	b) A parallel beam of light of 6000 A° is incident on a thin glass plate of refractive index 1.5	
	such that the angle of refraction into the plate is 50° . Calculate the least thickness of	the glass
	plate which will appear dark by reflection.	[4M] [L4]
6.	a) Define diffraction? Distinguish between Fraunhofer and Fresnel's diffraction? [6]	M][L1&L4]
	b) Distinguish between Interference and Diffraction?	[6M] [L4]
7.	a). Explain the theory of Fraunhofer diffraction due to single slit.	[8M] [L4]
	b). Obtain conditions for bright and dark fringes in single slit diffraction pattern and	draw
	intensity distribution.	[4M] [L4]
8.	a) Describe Fraunhofer diffraction due to double slit and derive the conditions for pr	rincipal
	maxima, secondary maxima and minima.	[8M] [L3]
	b) A plane transmission grating having 4250 lines per cm is illuminated with sodium	m light
normally. In the second order spectrum, the spectral lines are deviated by 30° . When		
	wavelength of the spectral line?	[4M] [L4]
9.	a) What is Diffraction grating and explain.	[8M] [L4]

b) Find the highest order that can be seen with a grating having 15000 lines/inches. The wavelength of the light used is 600nm. [4M] [L4] 10 a) Explain the Grating Spectrum? [6M] [L4] b) Derive the expression for wavelength light by diffraction. [6M] [L4] UNIT – II **ELECTRON THEORY OF METALS & ELECTROMAGNETIC THEORY** 1 a) What are the salient features of classical free electron theory? Derive an expression for electrical conductivity in a metal? [8M][L4] b) Find relaxation time of conduction electron in metal if its resistivity is $1.54 \times 10^{-8} \Omega$ -m and it has 5.8×10^{28} conduction electron/m³. Given m= 9.1 x 10^{-31} kg, e= 1.6 x 10^{-19} C. [4M][L1] 2 a) Describe the electrical conductivity in a metal using quantum free electronic theory.[8M][L3] b) Write advantages quantum free electron theory over classical free electron theory. [4M][L1] 3 a) Write brief note on Fermi Dirac distribution? [6M][L1] b) What is the effect of temperature on Fermi Dirac distribution function? [6M][L1] 4 a) Define effective mass and derive the expression for effective mass of an electron in periodic potential field. [8M] [L4] b) Evaluate Fermi Function for energy K_BT above Fermi level? [4M][L4] 5 a) Describe the various sources of electrical resistance in metals. [6M][L3] b) Classify the solids into conductor, semiconductor & insulators based on band theory. [6M][L2] 6 a) Write a significance of divergence and curl of a vector [8M][L1]

- b) Find the temperature at which there is 1 1% probability that a state with energy 0.5eV is above Fermi energy.
 a) State and Explain Gauss's Theorem for divergence .
 b) State and Explain Stoke's Theorem for curl.
- 8. a) Explain the Faraday's law and Ampere's law through the Maxwell equations. [8M][L4]
 b) Write the applications of Faraday's law. [4M][L1]

 9. Write Maxwell's equations in differential and integral form and derive an expression for energy flow by electromagnetic waves?
 [12M][L1]

 10 Explain the propagation of electromagnetic wave in non-conducting media.
 [12M][L4]

UNIT – III LASERS AND FIBER OPTICS

1	a) Describe the important characteristic of laser beam?	[6M][L3]
	b) Explain the difference between spontaneous and stimulated emission of radiation?	[6M][L4]
2	a) Derive the relation between the various Einstein's coefficients of absorption and e	mission of
	radiation.	[8M][L4]
	b) Explain population inversion?	[4M][L4]
3.	a) Explain the different pumping mechanisms in laser.	[8M][L4]
	b) Mention the important components of laser device.	[4M][L1]
4) Describe the construction and working principle of He-Ne Laser with the help of a neat	
	diagram.	[8M][L3]
		2

APPLIED PHYSICS (20HS0849)

QUESTION BANK 2020

QUESTION BANK 2020 b) Write the advantages of He-Ne laser. [4M][L1] 5 a) Describe the construction and working principle of NdYAG Laser with the help of a neat diagram. [9M][L3] b) Calculate the wavelength of emitted radiation from GaAs which has a band gap of 1.44eV [3M][L4] 6 a) Describe the construction of optical fiber [6M][L3] b) Explain the working principle of optical fiber [6M][L4] 7 a) What is the acceptance angle of an optical fiber and derive an expression for it. [8M][L1] b) An optical fibre has a core refractive index of 1.44 and cladding refractive index of 1.40. Find its numerical aperture and θ_a . [4M][L1] 8 a) What is the numerical aperture of an optical fibre and derive an expression for it. [8M][L1] b) An optical fibre has a numerical aperture of 0.20 and cladding refractive index of 1.59. Determine the refractive index of core and the acceptance angle for the fibre in water has a refractive index of 1.33. [4M][L3] 9. Explain the classifications of optical fibers based on refractive index profile and mode of propagation. [12M][L4] 10. a) Describe optical fiber communication system with block diagram. [7M][L3] b) Mention the application of optical fiber in sensors. [5M][L1]

UNIT – IV SEMICONDUCTORS

1.	a) What is intrinsic semiconductor and explain the formation of extrinsic semiconductors	
	through doping?	[6M][L1]
	b) Derive the expression for intrinsic carrier concentration.	[6M][L4]
2.	a) What is Fermi level? Prove that the Fermi level is lies exactly in between condu	ction band
	And valance band of intrinsic semiconductor.	[8M][L4]
	b) Draw the energy band structure of intrinsic semiconductor	[4M][L3]
3	a) Obtain the conductivity of intrinsic semiconductor with relevant expressions?	[8M][L4]
	b) The following data are given for an intrinsic Ge at 300K. Calculate the conduc	tivity
	of the sample? ($n_i = 2.4 \times 10^{19} \text{m}^{-3}$, $\mu_e = 0.39 \text{ m}^2 \text{-V}^{-1}\text{S}^{-1}$, $\mu_p = 0.19 \text{ m}^2 \text{-V}^{-1}\text{S}^{-1}$).	[4M][L4]
4.	a) Define energy band gap and Derive the expression for energy band gap of Intr	insic
	Semiconductor.	[8M][L4]
	b) The following data are given for an intrinsic Ge at 300K. Calculate the resistiv	ity of the
	Sample? ($n_i = 2.4 \times 10^{19} \text{m}^{-3}$, $\mu_e = 0.39 \text{ m}^2 \text{-V}^{-1} \text{S}^{-1}$, $\mu_p = 0.19 \text{ m}^2 \text{-V}^{-1} \text{S}^{-1}$).	[4M][L4]
5	Explain the formation of p-type and n-type semiconductors with band diagram	[12M][L4]
6	a) Derive the expression for current generated due to drifting of charge carriers in	l
	semiconductors in the presence of electric field	[6M][L4]
	b) Derive the expression for current generated due to diffusion of charge carriers	in
	semiconductors in the absence of electric field	[6M][L4]
7	a) Derive the expression for Einstein relation.	[8M][L4]
	b) Find the diffusion co-efficient of electron in Si at 300 K if $\mu_e = 0.19 \text{ m}^2\text{-V}^1\text{S}^{-1}$.	[4M][L1]
8	a) Describe the Hall Effect in semiconductors.	[8M][L3]
	b) Write the applications of Hall Effect.	[4M][L1]
9	a) Explain the formation of p-n junction.	[4M][L4]

APPLIED PHYSICS (20HS0849)

3

QUESTION BANK	2020
 b) Describe the construction and working mechanism of Photodiode [8 10. a) Describe the construction and working mechanism of LED. [8 b) Determine the wavelength of LED fabricated by the CdS material with [8 	3M][L3] 3M][L3]
band gap of 2.42 eV. [4	4M][L3]

UNIT-V

SUPERCONDUCTIVITY AND PHYSICS OF NANOMATERIALS

1.	a) Prove that super conductor is a very good diamagnetic material.	[8M][L4]
	b) Write the properties of Superconductors.	[4M][L1]
2.	a) Explain the Type-I and Type-II superconductors.	[7M][L4]
	b) What is Meissner effect?	[5M][L1]
3.	a) Explain BCS theory of superconductors.	[9M][L4]
	b).Calculate the critical current for a lead wire of 0.5mm radius at 4.2k . Given for	or lead
	$T_c = 7.18K$, Ho=6.5 x 10 ⁴ A/m.	[3M][L4]
4.	a) What is flux quantization?	[8M][L1]
	b) A superconducting material has a critical temperature of 3.7K and a magnetic i	field of
	0.0306T at 0 K. Find the critical field at 2K.	[4M][L1]
5.	a) Explain Josephson effect in superconductors.	[8M][L4]
	b) Write the applications of superconductors.	[4M][L1]
6.	a) What is nanomaterial? Write the classification of nanomaterials	[4M][L1]
	b) Explain the basic principle of nanomaterials.	[8M][L4]
7.	a) Explain the concept of Quantum Confinement in nano materials.	[6M][L4]
	b) Write the applications of nanomaterials in different fields.	[6M][L1]
8.	a) Explain why surface area to volume ratio very large for nano materials?	[7M][L4]
	b) Write the mechanical, magnetic and optical properties of nanomaterials.	[5M][L1]
9.	a) What are the techniques available for synthesizing nanomaterials?	[4M][L1]
	b) Explain ball milling technique for synthesis of nanomaterial?	[8M][L4]
10.	a) Explain Sol-Gel technique for synthesis of nanomaterial?	[8M][L4]
	b) Write advantages of sol-gel process?	[4M][L1]

Prepared by: Dept. of Physics